O'REILLY"

Practical
Linux System
Administration

A Guide to Installation,
Configuration, and

Management

Kenneth Hess

O'REILLY"

Practical Linux System Administration

This essential guide covers all aspects of Linux system
administration, from user maintenance, backups, filesystem
housekeeping, storage management, and network

setup to hardware and software troubleshooting and
some application management. It's both a practical daily
reference manual for sysadmins and IT pros and a handy
study guide for those taking Linux certification exams.

You'll turn to it frequently, not only because of the
sheer volume of valuable information it provides but
also because of the real-world examples within and
the clear, useful way the information is presented.
With this book at your side, you'll be able to:

e Install Linux and perform initial setup duties,
such as connecting to a network

¢ Navigate the Linux filesystem via the command line

¢ Install software from repositories and
source and satisfy dependencies

¢ Set permissions on files and directories

¢ Create, modify, and remove user accounts

e Set up networking

¢ Format and mount filesystems

e Perform basic troubleshooting on hardware and software
¢ Create and manage logical volumes

e Work with SELinux

¢ Manage a firewall and iptables

e Shut down, reboot, and recover a system

¢ Perform backups and restores

Kenneth Hess has been a Linux
system administrator for more than
25 years and a technology writer

and journalist for the past 20 years.
Ken has written hundreds of articles
covering desktop Linux, virtualization,
databases, and the general topic

of system administration.

SYSTEM ADMINISTRATION

US $79.99 CAN $99.99
ISBN: 978-1-098-10903-5

781098"109035

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Practical Linux System

Administration

A Guide to Installation, Configuration,
and Management

Kenneth Hess

Beijing « Boston « Farnham - Sebastopol - Tokyo [KON{={|HA®

Practical Linux System Administration
by Kenneth Hess

Copyright © 2023 Hess Media and Consulting, LLC. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins Indexer: Ellen Troutman-Zaig
Development Editor: Jeff Bleiel Interior Designer: David Futato
Production Editor: Gregory Hyman Cover Designer: Karen Montgomery
Copyeditor: Justin Billing lllustrator: Kate Dullea

Proofreader: Tim Stewart
April 2023: First Edition

Revision History for the First Edition
2023-04-18: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098109035 for release details.

The OReilly logo is a registered trademark of O’Reilly Media, Inc. Practical Linux System Administration,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-10903-5
[LSI]

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098109035

Preface

1.

Table of Contents

Getting Started with Linux...........cooviiiiiiiiiiiiiiiiinnn.,

Installing Linux
Preparing Your System for Linux
Downloading and Installing Linux
Getting to Know Your New Linux System
Learning the CLI
pwd
cd
Is
Starting, Rebooting, and Shutting Down a Linux System
Starting a System
Restarting a System
Shutting Down a System
Summary

Working with Permissions and Privileged Accounts....................

Working as a Regular User

Working as the Root User
Logging in as Root
Using the su Command
Using the sudo Command
Creating a Sudoer

Reading and Modifying Permissions
Read, Write, and Execute
Numerical Permission Values
Group Permissions

O 0 NI NN

—_ = =
oS O O o

11
12
12
12
14
14
15
15
16
16

Bringing Permissions into Focus
Changing File Permissions

Symbolic Mode

Numeric Mode

Default Permissions Explained: umask
Summary

. Customizing the User Experience...........covvvviiviniinniennnns

Altering Home Directory Options
Login Versus Nonlogin Shells
/etc/bashrc
/etc/profile
.bashrc
.bash_profile
.bash_logout

The /etc/skel Directory

Customizing the Shell Prompt

Summary

Managing Users.oovueiuiiniiiniiniiiiiiiiiiiinrnenneenes

User and Group ID Numbering Conventions
Creating User Accounts
Adding Users with useradd
Adding Users with adduser
Modifying User Accounts
Adding a Supplementary Group
Changing the User Comments Field
Setting an Expiration (Expiry) Date on an Account
Changing a User’s Login Shell
Removing User Accounts
Forcing Password Changes
Handling Service Accounts
Managing Groups Rather Than Users
Summary

. ConnectingtoaNetwork.........oovvvviiiiiiiiiiiiiiniennnnnn,

Plugging into a Network
Static IP Addressing
Dynamic IP Addressing
Networking and Security
Preparing a System for Network Connectivity
Pruning Your Systems

16
18
18
21
22
23

25
25
26
27
27
28
29
29
29
30
32

33
34
34
34
36
36
37
38
38
38
39
40
41
42
44

45
45
46
47
48
49
49

iv

| Table of Contents

Securing Network Daemons 50

The Secure Shell Daemon 50
Summary 55
. Installing and Uninstalling Software............ccooiiiiiiiiiiiiiiiiinnnnen. 57
Updating Your System 58
Applying Red Hat Enterprise Linux-Based System Updates 58
Applying Debian-Based System Updates 59
Installing Software from Repositories 60
Installing an Application 60
Uninstalling an Application 62
Installing and Uninstalling Individual Software Packages 64
Installing an Individual Software Package Manually 64
Uninstalling Individual Software Packages 67
Finding Package Dependencies 68
Installing Software from Source Code 70
Satisfying Prerequisites: Building a Development Environment 70
Download, Extract, Compile, and Install Your Software 72
Uninstalling a Source-Installed Software Package 74
Summary 75
. Managing Storage.ovvvuiiiiiiiiii i i i i e e 77
Administering Linux Storage 77
Disks 78
Filesystems 78
Mounting and Mount Points 78
Physical and Logical Volumes 79
Checking Space 80
Swap Space 81
RAM-Based Temporary Space (ramfs and tmpfs) 81
Adding a New Disk to a System 82
Installing the Disk 83
Prepping the Disk for Use 83
Implementing Logical Volumes 86
Decommissioning and Disk Disposal 92
Notification 92
Scream Test 93
Power Down 93
Disk Wiping 93
Unracking and Palletizing 93
Disposal 94
Summary 94

Table of Contents | v

8. Maintaining System Health..............coiiiiiiiiiiiiiiiii i 95

Keeping Your System Clutter-Free 95
Cleaning the /tmp Directory 95
Making /home a Livable Space for Everyone 97

Decluttering Shared Directories 101
Deduplicating Files with fdupes 101
Tackling /home File Sprawl with Quotas 103

Patching Your Way to a Healthy System 105
Patching a Red Hat Enterprise Linux-Based System 105
Patching a Debian-Based Linux System 107

Securing Your Systems 108

Maintaining User and Group Accounts 109
Setting Up a Naming Convention 110
Creating Account Retention Policies 111
Retiring Group Accounts 113

Monitoring System Health 114
Gathering System Activity Reports 116
Formatting System Activity Reports 118

Summary 119

9. Monitoring Your SYstem.ovvuiriuiiiniieiinriiirinniennerierenneennes 121

Maintaining Vigilance on CPU, Memory, and Disk
Performance and Capacity 121
Tracking CPU Usage 122
Exploring sysstat Monitoring 128

Reporting System Activity 128
Displaying System Activity Data in Multiple Formats 130
Monitoring System I/O Device Loading with iostat 130
Kicking It Old-School with the tapestat Utility 132
Collecting Processor Statistics 132
Monitoring Linux Tasks with pidstat 133
Watching Windows-Compatible Filesystem Statistics with cifsiostat 134
Summary 135

10. Scriptingand AUtomation.c.ovviiiiiiiiiiiiiiiiiiiiiiiiiieaas 137

Answering the Question: Why Automate? 137

Automating Yourself Out of a Job 138

Creating Scripts 139
Outlining Your Scripts 139
Writing a Script from an Outline 140

Scheduling Tasks 141

vi | Tableof Contents

1.

12.

13.

Using cron to Schedule Tasks
Preventing Time Drift with the Network Time Protocol
Summary

Deploying Samba for Windows Compatibility.....................ooooiiiii

Planning Your Samba Environment
Installing Samba and Its Dependencies
Adding Samba Users to Your System
Managing Samba Users as a Group
Providing Services to Mac and Windows Clients
Serving Network Storage to Desktop Clients
Configuring a Shared Directory
Browsing for Shared Directories
Mounting Windows System’s Shares
Summary

Troubleshooting Linux.oveuniiiniiiii ittt i iieeenns
Reviving the Operating System
De-escalating a Kernel Panic
Scraping System Logs
Unraveling Software Problems
Inspecting System Logs
Checking Application Logs
Leveraging Internal Application Checks
Managing Firewalls and Their Rules
Removing and Reinstalling Software
Rebooting Your System
Dealing with Hardware Failures
Preemptively Troubleshooting Hardware
Gathering System Hardware Information
Creating Automated Security Checks
Summary

SeCUriNg YOUr SYSteM. ..t ett ettt ittt eiiereneenneenesnnesannnes
Protecting the Root Account
Finding the Balance Between Security and Usability
Minimizing Your System’s Attack Surface
Creating and Securing User Accounts
Implementing Advanced Security Measures
Applying STIG Security Controls
Installing and Using Security Tools
Responding to Security Incidents

141
142
144

145
146
148
149
149
150
150
152
153
155
156

157
157
158
159
161
161
161
162
163
163
164
164
165
166
170
172

173
173
174
174
177
183
184
184
192

Table of Contents

vii

Creating a Written Security Policy

Confirming the Breach

Identifying the Malicious Actor(s)

Taking Corrective Actions
Summary

14. Continuing Your Education..............coovvvivennnenns.

Training Internally

Seeking Certification
Preparing for a Certification Exam
Taking the Exam

Educating Yourself

Formalizing Your Education

Using Your Job as Education

Summary

15. Making Career Moves.ovveeeueerneeeneeenneennnns

Starting Your Own Business
Facing Self-Employment Realities
Managing Employees
Hiring Contractors
Moving into Corporate Management
Challenging Yourself
Managing Your New Role
Changing with the Job Market
Searching Online Job Boards
Working Remotely
Learning How to Communicate
Leaving Your Current Position
Writing the Resignation Letter
Leaving Your Job
Summary

193
193
194
194
194

195
195
196
196
197
197
198
199
200

201
202
202
202
203
203
204
204
205
205
208
209
212
212
214
215

vii | Table of Contents

Preface

I love to teach. Some of my earliest memories are of teaching other kids to do
something—play chess, paint, or build forts for action figures. I taught other students
in high school and college. Teaching is something I do naturally. When I write
articles, whitepapers, or books, I adopt the role of a teacher. I place the reader in a
classroom and teach them tasks or concepts, such as changing permissions on a file
or adding a new user to a system. This is how my mind works. This book, like almost
everything I write, is a manifestation of that almost innate desire to teach, pass on
some knowledge, and plant a seed of curiosity that grows, blossoms, and spreads to
others. I hope you find inspiration in this book that leads you to do the same.

Who Should Read This Book

This book is for anyone who wants to explore Linux for the first time as a system
administrator or for someone who wants to transition to such a role for work or as a
serious hobby. It’s also meant for those preparing to take certification exams requiring
some Linux knowledge.

Why | Wrote This Book

I wrote this book to fill existing knowledge gaps for system administrators. I would
have purchased this book for myself early in my career and kept it at my desk for ref-
erence. Sure, there’s plenty of technical information in the book, as you might expect,
but there’s also career guidance and some coverage of the nontechnical aspects of
being a system administrator.

Navigating This Book

This book is organized as follows:

Chapter 1 introduces you to Linux via installation and initial setup.

Chapter 2 explores the command-line interface, essential to working with Linux
as a system administrator.

Chapter 3 demonstrates how to customize the user experience and introduces
you to the global system configuration files.

Chapter 4 focuses on user management.

Chapter 5 is an overview of Linux networking.

Chapter 6 is a how-to for software management.

Chapter 7 deals with storage concepts.

Chapter 8 is a discussion of maintaining system health.

Chapter 9 provides you with some tools for monitoring your system.
Chapter 10 explores scripting and automation.

Chapter 11 covers Windows interoperability using the Samba suite.
Chapter 12 teaches some practical troubleshooting techniques.
Chapter 13 helps you secure your system.

Chapter 14 summarizes educational opportunities you should explore to keep
yourself up-to-date and sharpen your skills.

Chapter 15 is advice to help you keep your career moving forward.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

X

Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/practical-linux-system-admin-code.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Practical Linux System
Administration by Kenneth Hess (O’Reilly). Copyright 2023 Hess Media and Consult-
ing, LLC, 978-1-098-10903-5”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi

https://oreil.ly/practical-linux-system-admin-code
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/practical-linux-system-admin.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

xii | Preface

https://oreilly.com
https://oreilly.com
https://oreil.ly/practical-linux-system-admin
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Acknowledgments

Being a Linux system administrator requires sacrifices from you and your family. I've
often stated that a sysadmin’s whole family works for a company. This might be true
for any job you have, but it seems especially relevant for system administrators. Linux
system administration is a great career choice, but take time for yourself, your spouse,
and your children. Remember that you don’t live to work; you work to live. You can’t
get missed moments back—the milestones, events, and celebrations that create an
existence that will be remembered fondly.

Thank you to my wife, Melissa, who always supports my creative pursuits.

I'd also like to thank the following people who helped make this book possible:

o John Devins, O’Reilly acquisitions editor
o Jeff Bleiel, O’Reilly development editor
o Gregory Hyman, O’Reilly production editor

o Technical reviewers Daniel Barrett and Adam McPartlan

Preface | xiii

CHAPTER1
Getting Started with Linux

Linux system administration means different things to different people. Administra-
tion, for this book, means the daily actions that a Linux system administrator (sysad-
min) must take to manage and support users, maintain system health, implement
best practices for security, install software, and perform housekeeping tasks. This
chapter covers Linux installation, initial setup, and system exploration using simple
shell commands.

You'll spend a significant portion of your time at the command line, also known
as the command-line interface (CLI). Linux system administrators rarely install or
use GUIs on their supported server systems. This chapter introduces you to the CLI
and some simple commands to navigate the filesystem, locate important files, and
familiarize yourself with the Linux CLIL

Installing Linux

One of the first things every Linux system administrator learns is how to install
Linux. There’s no single correct way to install Linux, but a few guidelines and sugges-
tions will make your life easier as your users’ needs change.

While this section won't go into detailed step-by-step instructions on installing Linux,
the basic steps are outlined here. For most junior-level sysadmins, system installation
generally occurs via automated means such as Kickstart or another enterprise-level
delivery system.

Preparing Your System for Linux

If this is your first time installing Linux, I suggest that you install it into a virtual
machine (VM). That way, you don’t have to dedicate an entire piece of hardware
to a learning system and you won't potentially render your system inoperable by

attempting to install Linux in parallel to your current system, creating a multiboot
computer. (Setting up multibooting is a more advanced concept and is beyond the
scope of this book.)

If you don’t already have it installed, a good place to start with virtualization is to
download and install the latest version of VirtualBox. VirtualBox is an application
that allows your current computer to act as a VM host system where you may
install virtual guests, such as Linux, into a separate, functioning computer system.
VirtualBox runs on various host operating systems (OSs) and supports various guest
operating systems, including Linux. The host OS and guest OS can be different from
one another. Your computer (host OS) can be a Windows, Mac, or Linux-based
system but have guest Linux systems installed on it as VirtualBox VMs.

Downloading and Installing Linux

Next, you’ll need to select a Linux distribution (distro) to install so that you can
practice issuing commands, changing configurations, rebooting, installing software,
creating users, and so on. I suggest you select a Linux distro based on the one
your current employer uses. If your company doesn’t use Linux yet or youre not
employed in a system administrator role, then select from one of the following
popular distributions:

Debian
Debian is a top-level distribution from which many other distributions are
derived. Debian is community-supported, open source, and free.

OpenSUSE
OpenSUSE is a community-supported, top-level distribution with many faithful
followers worldwide. Its commercial version, SUSE Linux Enterprise, has wide-
spread adoption.

Red Hat Enterprise Linux
Red Hat is a commercially supported Linux distro that enjoys worldwide enter-
prise adoption and is now owned by IBM.

Ubuntu
Ubuntu is very popular and has both (Debian-derived) community and commer-
cially supported distributions. Ubuntu also offers ready-made VirtualBox (and
other) VMs to help you get a quick start.

The downloaded ISO file is a bootable Linux image. You don’t have to do anything
to it if you use it to create a VM. A VM will boot from the ISO image and begin the
installation process. After configuring your VM in VirtualBox, select Settings from
the Oracle VM VirtualBox Manager, as shown in Figure 1-1.

2 | Chapter 1: Getting Started with Linux

https://oreil.ly/X4dKu
https://oreil.ly/hxbxl
https://oreil.ly/hsBY4
https://oreil.ly/0nvvM
https://oreil.ly/zoK4o

(eo® Oracle VM VirtualBox Manager

IR oo @& O 9

New Sertings Discard

Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-x/AMD-V, Nested Paging,
PAE/NX, KVM

EI, Illd Hat Emmﬂ- Linx8 gQ— = General =] preview
— Name: Red Hat Enterprise Linux
8
Operating System: Red Hat (64-bit)
& system Red Hat Enterprise
Base Memory: 1024 MB Linux 8

Paravirtualization

=) pisplay

Video Memary: 16 MB

Graphics Controller: VMSVGA
Remate Desktop Server: Disabled
Recording: Disabled

B storage
Controller: IDE

IDE Secondary Device 0: [Optical Drive] Empty
Controller: SATA

ifn Audio

Hnet Driver Coredowdin

SATA Port 0: Red Hat Enterprise Linux 8.vdi (Normal, 8.00 GB)

Figure 1-1. The Oracle VM VirtualBox Manager application and a configured
virtual machine

Then, select Storage, as shown in Figure 1-2.

oce Red Hat Enterprise Linux B - Storage
Bomyoeeo O O
‘General Display Storage Audio Network. Ports Shared Folders User Interface
Storage Devices — | Atiributes

| IDE Secondary Device 0 a @

| @ Controller: IDE | Optical Drive:

& Controller: SATA [Live CD/DVD
- Red Hat Enterprise Linux 8.vdi ion
Type: --
Size: -
Location: -- |
Attached to: —
¢ ¢ @ |GB)

Lo

Figure 1-2. Virtual machine settings with Storage settings selected

Installing Linux

3

Select the empty optical disk drive under the IDE controller in the Storage Devices
pane and then select the optical disk icon in the Attributes pane to browse for your
ISO image file. Figure 1-3 shows several ISO files available in this menu.

[NN Red Hat Enterprise Linux 8 - Storage

- ow eSO O

General System Display Storage Audlo Network Ports Shared Folders User interface

Storage Devices
@ Controller: IDE Optical Drive: | IDE y Device 0 @
. Choose/Create a Virtual Optical Disk...
& Contraller: SATA s Choose a disk file...
@ Red Hat Enterprise Linux 8.vdi i Host Drive 'HP DVD Writer 557s'
Type: — rhel-8.4-x86_64-dvd.iso
Size: -- openSUSE-Leap-16.2-DVD-xB6_64.is0
ubuntu-20.04.2-live-server-amdé4.iso
Location: -~
Attached to: — Remove Disk from Virtual Drive
e @ >
GB)
cance | r

Figure 1-3. Select the ISO image from the list

Once you've selected your ISO image, click OK to proceed. When you start your VM,
it will boot from this ISO image to begin installation onto your VM’s virtual disk.

When your system boots, you can accept the default settings. If you have experience
installing Linux, you can change the default settings to suit your needs. Create a user
account when prompted to do so. If your distribution prompts you to give the root
account a password, do so. You must remember this password because, without it,
you'll have to reinstall your Linux VM or try to recover it. Installing Linux can take
several minutes, and a reboot is required at the end of the installation process.

Getting to Know Your New Linux System

After installation, the first thing you need to do is log in using the username and
password that you created during installation. You're placed into your home directory
inside a shell (or operating environment) upon login. Your home directory (/home)
is a subdirectory of the / directory. The Linux filesystem is a hierarchical filesystem,
similar to Microsoft Windows. At the top level, there is the root directory, which
is represented by the / symbol. Windows uses a drive letter, such as C:, for the
root directory. On Windows, you can have many drive letters with their own root
levels, such as C:, D:, E:, and so on. In Linux, there is only one root directory, /. All

4 | Chapter 1: Getting Started with Linux

other directories are subdirectories of the root directory. The following directory tree
illustrates the Linux root directory and its subdirectories:

|- bin
|- dev
|- etc
|- home
- b
|- media
|- mnt
|- opt
|- proc
|- root
|- run
|- sbin
|- srv
|- sys
|- tmp
|- usr
var

Note that there are only directories under the / (root) filesystem and no individual
files, although some Linux distributions have a few symbolically linked files in /. All
files are kept in directories. You'll explore many of these subdirectories throughout
the rest of the book. Table 1-1 provides a brief overview of the files and information
in each directory.

Table 1-1. The Linux filesystem

Directory Description

/ The root filesystem only contains other directories but no individual files.
/bin The binaries directory contains executable files. Points to /usr/bin.

/dev The device directory contains device files to address peripherals.

/etc Contains system configuration files for users and services.

/home Users” home directories.
/lib System libraries files. Points to /usr/lib.
/media Directory for mounting media such as USB drives or DVD disks.

/mnt The mount directory for mounting remote filesystems.

/Jopt Directory in which third-party software is installed.

/proc A virtual filesystem that tracks system processes.

/root The root user's home directory.

/run Variable and volatile runtime data.

/sbin System binary (executable) files.

/sty Might contain data from system services.

/sys Contains kernel information.

/tmp Directory for storing session information and temporary files.

Getting to Know Your New Linux System | 5

Directory Description

Jusr Programs and libraries for users and user-related programs.
Jvar Variable files such as logs, spools, and queues.

System files are protected from user modification. Only the root (administrative)
user can modify system configuration files and settings. Users generally have write
access only to their own home directories, the /tmp directory, and shared directories
specifically created and modified by the administrator.

In the next section, you learn how to interact with your new Linux system at the
command line.

Learning the CLI

The command-line interface, or CLI, is how most system administrators interact with
their Linux systems because server systems don't typically have a graphical interface.
In Microsoft Windows terminology, a CLI-only system, such as a Linux server, would
be equivalent to a Windows Server Core system where you only have access to
command-line utilities.

As the name suggests, you interact with the Linux system using commands that you
enter with a keyboard or standard input (stdin). The source from stdin can also be
file redirection, programs, and other sources, but in the context of this book, stdin
refers to keyboard input unless otherwise noted. Many commands are informational
and display data about the system or system activities to the screen or standard output
(stdout). Sometimes you'll receive an error from the system known as standard error
(stderr). You'll see the full and abbreviated versions of these terms used interchange-
ably throughout this text and in other Linux-related documentation that you’ll find
elsewhere.

You must learn a few commands to interact successfully with the filesystem. By
“learn,” I mean commit to memory rather than looking them up online. There are
only a few commands like this, and there are a few options that you should also
commit to memory so that your interaction with the system becomes natural and
efficient. Don’t worry about harming the system with any command I cover—TI’ll
warn you when a command should be used carefully.

There are a few things you need to know before jumping into issuing commands.
The first is that Linux doesn't use file extensions. This means that the file filename.exe
has no more meaning to Linux than the file Financial_Report.txt or Résumé.doc. They
are all files and might not be executable or text files. In Linux, you can name a file
almost anything you want to (there are a few limitations), but use whitespace in
filenames with caution because doing so requires you to use quotation marks around
the filename.

6 | Chapter 1: Getting Started with Linux

The second thing to know about Linux is that filenames are case-sensitive. In other
words, filename.txt and filename. TXT are two different files. I will prove this later in
the chapter. For now, take my word for it. The third thing to know is that a file’s per-
mission determines whether you can execute the file, edit the file, or even look at the
files contents. Fourth, every Linux location is uniquely named by its path from the
root (/) directory. For example, if you mention the password file in Linux, it's shown
as /etc/passwd. This is known as the absolute path and is the standard convention for
speaking about or referring to files on the system. Fifth, Linux assumes you know
what you want to do and that you've spelled everything correctly when you issue a
command, so be careful, because some actions are irreversible.

Finally, Linux (like Unix, or more generally “*nix” systems) is not “chatty” like the
Windows operating systems are. Linux systems, for example, don't prompt you with
an “Are you sure?” message when you remove (delete) files. Again, the Linux system
assumes you want to execute the command you issue if you correctly spell all parts of
the command. Spelling counts at the Linux command line.

Navigating the Linux filesystem means exploring the various system directories,
learning to return to your home directory, and listing directory contents differently.
If youre a Windows user and you've worked at the Command Prompt (cmd) or
PowerShell prompt (PS) on that platform, then the Linux command line will be
familiar to you.

The short list of commands in the following sections will acquaint you with the Linux
filesystem, files, and the contents of your home directory.

pwd

The pwd (print working directory) command displays where you are on the filesys-
tem. If you type the pwd command now, followed by the Enter key, the command
responds with /home/your_login_name. Always ensure that you press the Enter key
after each command so that you can receive a response:

$ pwd

/home/student1

The $ is your shell prompt that shows you're logged into the system as a user. You'll
use this command more later in the chapter.

cd

The cd (change directory, or current directory) command places you into a new
directory, returns you to your home directory, and moves you to a higher level or a
subdirectory. The cd command is analogous to the Windows cd command:

Learning theCLI | 7

$ cd /etc
$ pwd
[etc

Simply entering cd returns you to your home directory regardless of where you are
on the filesystem, as demonstrated here:

$ pwd
Jetc
$ cd
$ pwd
/home/student1

When you cd to a directory, use its absolute path:
$ cd Jusr/bin

You can cd to a subdirectory without the absolute path if youre currently in the
parent directory:

$ cd

$ pwd
/home/student1
$ cd Jusr

$ cd bin

$ pwd

Jusr/bin

The cd command is one that you'll use every time that you connect to a Linux system.

Is

The 1s (list) command displays a list of files and directories within the location you
specify. If you don't specify a location, s displays the list of files and directories in
your current directory:

$ cd
$ pwd
$ /home/student1
$ s

You have no visible files in your home directory yet because you haven't created
any and none exist by default. However, you can list files from other directories by
specifying the absolute path to the directory list you wish to see. There are too many
files to list here in the /usr/bin directory, so I've truncated it to these few:

$ 1s /usr/bin

a2x getcifsacl pl1-kit snmpping
azx.py getconf pack200 snmpps
ac getent package-cleanup snmpset

8 | Chapter 1: Getting Started with Linux

There are files in your home directory, but they’re hidden because of the way they’re
named. Files that begin with a period (.) are hidden from a regular 1s command. To
see these files, you must use a command option to allow you to see all files:
$1s -a
.bash_history .bash_logout .bash_profile .bashrc .gnupg .zshrc
Your listing might vary slightly from this, but understand that all directories and files
whose names begin with a period are hidden from standard file lists using the 1s

command with no options. You can cd into hidden directories or list files within
them:

$ 1s .gnupg

private-keys-vi.d pubring.kbx
The 1s command is one you’ll use every time you log into your Linux system and
is certainly one that you want to commit to memory. I will use the ls command
throughout this book and introduce you to many more options for it along the
way. Now that you've learned the basics of filesystem navigation, it’s time to cover
rebooting and shutting down your system.

Starting, Rebooting, and Shutting Down a Linux System

The most basic tasks facing any Linux sysadmin are starting, restarting, and shutting
down a system. If you have computer experience, you know that powering off a
system without issuing a shutdown command is bad. It’s bad because doing so can,
for example, corrupt open files, leave open files in an “open” state, disrupt running
services, and cause problems with database transaction logs, possibly resulting in data
loss.

Proper knowledge of how to start, restart, and shut down a system is of great value to
sysadmins.

Starting a System

For physical systems, you press the power button and release it to start a system. This
begins the power-on self-test (POST) and boot process. Watching the console during
boot is important because the system notifies you and logs any issues as it starts up.
Watch the screen for any errors or anomalies along the way. (The worst message you
can experience on boot is a “kernel panic,” which will be covered later in the book.)
Hopefully, all is well with your system, and the process ends with a login prompt.

The startup process is quite short but can identify systemic problems such as mem-
ory, disk, filesystem, and network issues. I'll cover troubleshooting in a later chapter,
but be aware now that you should watch the boot process carefully, noting any
problems for later investigation.

Starting, Rebooting, and Shutting Down a Linux System | 9

Restarting a System

Restarting or rebooting a system is a standard sysadmin practice. Although you
might read or hear the contrary, there’s nothing wrong with rebooting your system.
You should do so regularly for all of the reasons stated in the previous section.
Restarting a system clears memory, refreshes connections, and ensures the system is
healthy. A good reboot can cure certain nagging problems, such as an application that
drains your system’s memory, but only temporarily.

Any issues resolved with a reboot should be investigated more thoroughly after
the system is up and stable. Restarting a system allows you to troubleshoot before
application problems, logging problems, or network problems place the system back
into a state when it requires another reboot.

Shutting Down a System

Shutting down means issuing a command that gently and appropriately closes all
programs and eventually powers off the system. This gentle shutdown also warns
shell users that the system is going down so that everyone can save their work and
log oft.

System shutdown should be reserved for hardware maintenance, relocation, or
decommissioning. Some enterprise policies require that systems go through a full
shutdown once a year to identify hardware issues that might not manifest themselves
except through a complete system failure. Technicians and sysadmins usually take
this opportunity to perform hardware maintenance or hardware checks at the same
time.

Summary

This first chapter got you up and running with a live Linux system, covered some
Linux basics, explored a few essential commands, and instructed you on the how
and why of system startup, rebooting, and shutdown. In Chapter 2, you’ll learn more
about using the CLI and how to use commands to create, remove, and modify files.
You will also learn about Linux permissions, how to set and interpret them, and how
to set a global default permission for users.

10 | Chapter 1: Getting Started with Linux

CHAPTER 2

Working with Permissions
and Privileged Accounts

For sysadmins, the CLI is home. Typing at the keyboard is standard fare. You'll need
to become comfortable with the command line, its idiosyncrasies, and its shortcuts—
yes, there are command-line shortcuts. There’s a lot to learn about Linux at the
command line. There are dozens of commands, each with dozens of options. Sure,
you'll only use a handful of commands and a limited number of options for each
command, but you need to know how to find the options you need and how to use
them when you need to.

The true power of the CLI is in its ease of use. The CLI was the first interface that
users and programmers had with which to address their operating environments. The
fact that the CLI is still in use some 50 years later is a testament to its power and
usefulness to the sysadmin and user alike. This chapter teaches you to work at the
command line as a regular user and as a root user. You also learn to set and modify
file permissions and the effects that those permissions have on files.

Working as a Regular User

There are two user types on a Linux system: regular users and a root, or administra-
tor, user. Regular users each receive their own home directory and somewhat limited
system use. The root user also has a home directory (/root). Regular users have
almost unlimited power in their own home directories to create, modify, remove,
and manipulate files but have almost no power outside of that single location. Many
system commands are available to regular users. In contrast, other commands are
restricted to those granted limited root user access through the sudo command or
direct access to the root user account.

n

The general and most security-conscious rule is that you should
always work as a regular user unless some task requires privileged
(root user) access, which is covered in the next section.

Working as the Root User

The root user is the all-powerful account on any Linux system. The root user can
create, edit, move, or remove any file on the system. The root user can reboot, change
runlevels, and shut down the system. There are three methods of becoming the root
user:

« Logging in as the root user
o Using the su (substitute user) command

o Using the sudo command

Logging in as Root

On some Linux distributions, you can directly log in as the root user on a system
via SSH across the network or interactively at the console. Some Linux distributions
prevent SSH root logins by default, while others leave it up to the administrators to
decide. It’s not recommended to SSH to a system and login as root. The primary
reason is that if you allow across-the-network root access to a system, then it’s
possible that malicious actors can attempt to brute force a root login. You don’t want
this to happen. Later in the book, I'll show you how to prevent SSH root logins, if not
already disabled, on your distribution.

You shouldn’t directly log in as root at the console because doing so prevents system
logging from recording who has logged in and become root. Recording who uses the
root user account is important because when something goes wrong, you want to
know which administrator performed the actions. This record-keeping’s purpose is
not to lay blame. Still, it is necessary to meet some regulatory requirements and to
correct the actions of a system administrator who needs a teachable moment or some
advanced training. The next two options we discuss are better, safer ways to become
the root user.

Using the su Command

One of the appropriate methods of becoming the root user is to use the su (substitute
user) command. The caveat with using su is that the user must know the root user
password. If administrative users know the root password, it’s difficult to prevent
those same administrators from directly logging in as root. Using the su command

12 | Chapter2: Working with Permissions and Privileged Accounts

to become root is acceptable, but only if the root password changes after each use.
In larger enterprises, security groups maintain root passwords, and system adminis-
trators can check out the root password temporarily to perform maintenance.

The root user may su to any other user account on the system without knowing
the user’s password. This power allows administrators to log in as, or become, any
user for troubleshooting purposes because it’s often difficult for users to accurately
describe problems they’re experiencing. It also prevents a user from revealing their
password to an administrator, which should force the user to change their password.

To su to another account is a simple procedure. Issue the su command and the user
account you wish to su to. For this example, I use the full prompt rather than just the
$ to demonstrate the user change:

[bjones@server1] $ su root

Password:
#

The # prompt informs you that you are now logged in as the root user. In this book,
the user prompt is $ and the root is #, to distinguish a standard user’s prompt from
the root user’s. Any command you issue now is done with root privilege, which
means that you must be careful because there are no restrictions on the account.

The better method of using su is using the su - command because the - means
that you also want to take on the root user’s full environment rather than just the
account privilege. The display is much too long to show here, but if you issue the env
command, you’ll see the original user’s environment variables rather than root’s:

env
Use the exit command to return to the original user account, as shown here:

exit
[bjones@server1] $

And now issue the su command with the - option. You don’t have to specify root in
this command because the default is root:

[bjones@serverl] $ su -
Password:
env

The root user’s environment variables are now displayed. Using the su - command

is the equivalent of logging into the console as the root user. Any user may su to any

other user account, which requires one to know the other user’s password:
[bjones@serverl] $ su cdavis

Password:
[cdavis@serverl] $

Working as the Root User | 13

Using the sudo Command

The best method to obtain root access is to use the “substitute user do” or “execute
a command as another user” (sudo) command. The sudo command allows an appro-
priately configured user account to issue individual commands as the root user. The
sudo command must precede each command issued. On first use, the sudo command
requires that the sudoer (a user account configured for sudo use) supply their own
password, as shown in the following code listing. Knowledge of the root password
isn’t required.

$ sudo env

[sudo] password for bjones:

bjones is not in the sudoers file. This incident will be reported.
[bjones@serverl ~]$

The warning that the user is not in the sudoers file means that the user account,
bjones, is not configured in the /etc/sudoers file. In the next section, I demonstrate
how to set up a user to be a sudoer.

The sudo command, the /etc/sudoers file, and the sudoer user label
are interesting because they have their own unique pronunciations.
The accepted pronunciation for sudo is “soodoo” and sudoer is
<« » : « o2l
soodooer” Some sysadmins pronounce them as “soodoe” and
“soodoe-ers,” but no one takes issue with either pronunciation.

Creating a Sudoer

You must have root user access to edit the /etc/sudoers file and to use the visudo
utility, whose only purpose is to edit the /etc/sudoers file. You shouldn't edit it directly
with vi, Emacs, or any other text editor. To edit the /etc/sudoers file, issue the visudo
command as root with no options:

visudo

The /etc/sudoers file is a simple text file describing users, groups, and commands
that can work with root or other user privileges. You can create a sudoer with very
restrictive permissions (i.e., to run a single command as root) or permissive: run
any command as root without entering a password to do so. I prefer to configure a
mixture of the two by creating sudoers who can run any command as root but must
supply their password.

Hundreds of possible configuration scenarios exist for the /etc/sudoers file and sudo-
ers. It's out of the scope of this book to explore more than what’s given here as
examples. In this first example, I demonstrate how I set up my user account to use
sudo. My settings require me to enter my password when using sudo:

14 | Chapter2: Working with Permissions and Privileged Accounts

Allow root to run any commands anywhere

root ALL=(ALL) ALL

khess ALL=(ALL) ALL
I copy the root user’s setting and insert my user account in its place. The setting takes
effect immediately. Setting up a user account to use sudo without issuing a password
is not recommended. Using a password when issuing a command is an attempt to
make it more difficult to make mistakes while wielding root privilege. The same can
be said of the sudo command itself. The theory is that if an administrator has to issue
the sudo command, they will make fewer mistakes as root because it requires them to
think specifically about their command action and its results.

Reading and Modifying Permissions

This section teaches you how to read and modify file permissions. You must learn file
permissions to set and modify access to files and directories appropriately. Knowing
file permissions helps troubleshoot when users can’t access a file or directory.

File permissions are simple but central to Linux security. Their simplicity can make
them susceptible to neglect and misconfiguration. Frustrated sysadmins sometimes
loosen permissions to solve a problem but never return to the issue or reset the
permissions to their proper settings.

Read, Write, and Execute

The three Linux file permissions or modes are read (r), write (w), and execute (x):

Read
View a file or list directory contents.

Write
Create and moditfy a file or copy, move, and create files in a directory.

Execute
Execute/run a file or cd into a directory.

As mentioned in Chapter 1, a file's name does not determine whether it’s executable,
as is the case for MS Windows (.exe files, etc.). A Linux file is executable or not based
on its permissions.

Using the rwx designations in permissions is known as symbolic mode. The symbolic
mode is one of two methods of identifying permissions. The other is the numeric
mode, which assigns values to each of the rwx permissions.

Reading and Modifying Permissions | 15

Numerical Permission Values

Each of the permission modes has its own assigned numerical value. This shortcut
method makes setting permissions easier for sysadmins.

The read permission has a value of 4, write has a value of 2, and execute has a value
of 1. Permission values can range from 0 to 7. A zero permission value means no
permission. Table 2-1 summarizes this idea.

Table 2-1. Numerical permission values

Permission mode Numerical value

Read 4
Write 2
Execute 1
None 0

In the next section, you will find out how these permissions work together with
group permissions to create a simple but complete file security system.

Group Permissions

Four file permissions apply to a user’s group: user, group, others, and all. The “all”
group includes user, group, and others. It is a shorthand method of globally assigning
permissions to a file or directory. Each group has a shorthand designation as well, as
shown in Table 2-2.

Table 2-2. Group permissions

Permission group Value

User
Group
Other
All

[=

w | O |V

Users and sysadmins may set permissions on files for each group individually or
all groups simultaneously. Each Linux file and directory is assigned read, write, and
execute permissions for each group. The next section ties all of the permissions
settings together for you.

Bringing Permissions into Focus

In this subsection, I'll create a simple but complete file security system that shows
how all the permissions we've discussed work together. The examples in this section

16 | Chapter2: Working with Permissions and Privileged Accounts

will use the file file.txt. If you want to follow along with the example, issue the
following command to set up your file:

$ touch file.txt

This command creates an empty file named file.txt for you. Next, issue the 1s com-
mand with the -1 (long) option to see file permissions:

$1s -1

-rw-rw-r--. 1 khess khess 0 Jun 19 17:35 file.txt
Figure 2-1 illustrates the positions and their designations (in bold). The first position
is for special file types, such as directories with a d in that position (dr-xr-xr-w).
Regular files have a - (-rw-rw-rw-) to show that theyre not directories or other
special files. The next nine positions are user, group, and other permissions locations.
The first “triad,” or three positions, are for the user, the second for group, and the
final three are for other users.

Special character “TW-Trw-r-—-
User permission “-TWXIr——-r-—-
Group permission —TWXI=Xr--
Other permission “TW-Trw-rw-

Figure 2-1. Special character position and user, group, and other permission locations

Figure 2-2 shows the numerical permissions for each listing and then an explicit label
for the user (u), group (g), and other (o) triads.

6 6 4

Special character =T'W—rw—-r—-—
7 4 4

User permission “FTWXIr—-r—-
7 5 4

Group permission —TWXIr=Xr--
6 6 6

Other permission “-TW-TW-TW-
u g o

Figure 2-2. Numerical permission values and user, group, and other (ugo) designations

Reading and Modifying Permissions | 17

As shown in Figure 2-2, numerical permissions are additive for each triad to create
a permission profile for a file. For example, a file with -rw-rw-r-- permissions has
a numeric permission value of 664. The read permission has a value of 4 added
to the value of the write permission, which is 2, which equals 6. All three possible
permissions, rwx, yield a value of 7.

If a file has permission equal to 750, the rwx representation is -rwxr-x---. This
means that others outside the designated user and group have no permission for the
file.

The other group is often referred to as world. For example, if per-
missions for a file are -rw-rw-r--, this file is referred to as world
readable rather than as other readable. Permissions for the “other”
group are especially sensitive because allowing write or execute
permissions to files and directories to others (the world) can be a
security risk.

Next, you'll learn how to set and change file permissions using multiple methods.

Changing File Permissions

Setting and changing file permissions or modes is a common system administrator
task. Each file on the filesystem has permissions that allow or deny access to users,
groups, and others. To change file permissions, you use the chmod (change mode)
command. You can set or modify permissions with the chmod command in multiple
ways. You don’t have to be consistent. You can use chmod with either numeric desig-
nations or the rwx and ugo designations, but you can’t combine the two in the same
command. I demonstrate several possibilities and practical examples in the following
sections.

Some sysadmins find the symbolic (rwx and ugo) method easier to
grasp than the numeric (0, 1, 2, 4) method. You can use either or
both methods, because they are equivalent.

Symbolic Mode

Changing permissions using the symbolic mode method is quite simple. Referring
to the original file.txt file you created in a previous example, view the original
permissions with the s -1 command:

$1s -1
-rw-rw-r--. 1 khess khess 0 Jun 19 17:35 file.txt

18 | Chapter2: Working with Permissions and Privileged Accounts

The current file permissions aren’t adequate. You need to restrict anyone else but
yourself from even reading this file. How do you do it? You remove the read permis-
sion from others. Removing is equivalent to subtraction because you are subtracting
a permission from the current ones given to the file. So, to remove read permission
from the file, you subtract read from others using the chmod command:

$ chmod o-r file.txt

$ 1s -1

-rw-rw----. 1 khess khess 0 Jun 19 17:35 file.txt
You have removed read permission from the file for others. Now, no one but you can
read (or write to) this file.

When you create a shell script and attempt to execute it with . /file.sh but nothing
happens, you should check the file’s permissions to see if you've added the execute
permission:

$ touch file.sh

$ echo "echo Hello" > file.sh

$./file.sh

-bash: ./file.sh: Permission denied

Permission denied? But I just created the file in my home directory! Checking
permissions reveals the problem:

$1s -1

-rw-rw-r--. 1 khess khess 11 Jun 29 19:58 file.sh
The file, file.sh, is named with a .sh extension. Recall that extensions have no effect
in Linux and realize that file.sh isn't currently executable because it doesn’t have the

execute permission. You receive the “Permission denied” message when attempting to
execute it. To fix the problem, add the execute permission for yourself:

$ chmod u+x file.sh

$1s -1
-rwxrw-r--. 1 khess khess 11 Jun 29 19:58 file.sh

Now, file.sh is executable:

$./file.sh

Hello
You can add or subtract multiple permissions from a file and even add and subtract
permissions within the same command. Here are some examples of each action. The
first command removes (deletes—rm file.txt) the file from any previous example.

To add multiple permissions to a file:

$ rm file.txt

$ touch file.txt

$1s -1

-rw-rw-r--. 1 khess khess 0 Jun 29 20:13 file.txt

Changing File Permissions | 19

$ chmod ug+x,o+w file.txt
-rwxrwxrw-. 1 khess khess 0 Jun 29 20:13 file.txt

To subtract multiple permissions from a file:

$1s -1

-rwxrwxrw-. 1 khess khess 0 Jun 29 20:13 file.txt
$ chmod a-x,o0-rw file.txt

$ s -1

-rw-rw----. 1 khess khess 0 Jun 29 20:13 file.txt

Now add execute permission for all groups and remove read permission for others:

If you don't specify which groups you wish to add permissions or subtract permis-
sions for, the default behavior is for the system to assume the intended group is all.
This can be dangerous from a security perspective. Never grant permissions to all
groups unless that is what you intend to do. In the following example, the execute
permission is granted to all groups because you didn’t explicitly define which group

$ rm file.txt

$ touch file.txt

$1ls -1

-rw-rw-r--. 1 khess khess 0 Jun 29 20:13 file.txt
$ chmod a+x,o0-r file.txt

$ s -1

-rwxrwx--x. 1 khess khess 0 Jun 29 20:23 file.txt

Be careful to explicitly define which ugo group you want to add or
subtract permissions for. Simply supplying a +x or -r defaults to all.

N

should receive it:

$ rm file.txt

$ touch file.txt

$ s -1

-rw-rw-r--. 1 khess khess 0 Jun 29 20:34 file.txt
$ chmod +x file.txt

$1s -1

-rwxrwxr-x. 1 khess khess 0 Jun 29 20:35 file.txt

To execute an executable file or script that is not in your path,
you must provide the explicit path to the file. If the file is in your
current directory, you must tell the shell that it is in your current
directory and that youd like to execute it. Use ./script_name.sh
to inform the shell that the file is executable and in your current
directory. Here, script_name. sh is the file you wish to execute.

20

| Chapter 2: Working with Permissions and Privileged Accounts

Numeric Mode

For clarity and comparison, the examples in this section are duplicates of the exam-
ples in the previous section. But here we use the numeric mode (rather than the
symbolic mode) of changing permissions.

Create a new file and check its permissions:

$ rm file.txt

$ touch file.txt

$1s -1

-rw-rw-r--. 1 khess khess 0 Jun 29 21:12 file.txt

Remove the read permission from the other group using the numeric method. First,

calculate the current permission value of the file and then what you want the new
value to be. Currently, the file’s permission value is 664. The desired value is 660:

$ chmod 660 file.txt
$1s -1
-rw-rw----. 1 khess khess 0 Jun 29 20:12 file.txt

Using the numeric method, there’s no adding or subtracting of permissions. You
simply reassign a permission value to the file. The code shown next is a repeat of what

you did just a page ago and is a symbolic example. You added the execute permission
to all and subtracted the read permission from others:

$ rm file.txt

$ touch file.txt

$1s -1

-rw-rw-r--. 1 khess khess 0 Jun 29 20:13 file.txt
$ chmod a+x,o0-r file.txt

$1s -1

-rwxrwx--x. 1 khess khess 0 Jun 29 20:23 file.txt

The numeric equivalent is to reassign the value of the original file (664) to the new
one (771):

$ rm file.txt

$ touch file.txt

$1s -1

-rw-rw-r--. 1 khess khess 0@ Jun 29 20:13 file.txt
$ chmod 771 file.txt

$1s -1

-rwxrwx--x. 1 khess khess 0 Jun 29 20:23 file.txt

Either method of changing permissions is perfectly acceptable; it doesnt matter
which method you use. Like most sysadmins, I use both methods interchangeably.
It depends more on context and how quickly I want to do something. Changing
permissions will become automatic to you with some practice and a few mistakes
along the way.

Changing File Permissions | 21

Default Permissions Explained: umask

You might have noticed that when you create a new file, it’s created with specific
permissions: 664 or -rw-rw-r--. For the root user the default permissions for a new
file are 644 or -rw-r--r--. You might now wonder how this happens. A global setting
called a umask (user file-creation mask) masks or filters certain permissions from
being given to files by default. The execute permission is never given by default, so
the umask setting does not explicitly mask it. To find out your user account’s default
umask value, use the umask command:

$ umask

0002
You might now wonder why the umask reports four digits; we've only worked with
three so far. The first (leftmost) digit is for special permissions such as setuid,
setgid, and sticky, which T'll cover in a later chapter. For now, focus only on the
rightmost three digits: 002. These three digits correspond to rwx permissions for user,
group, and other, respectively. When you create a new file, certain permissions are
filtered out. In the case of the 002 umask, the write (w) permission is filtered out, so
new files are created as -rw-rw-r--. The 2 is for write permission. When a new file
is created, the write permission is masked from the “other” group and therefore isn’t
given to the new file.

For the root user, the default umask on my system is 0022. The write (w) permission
is masked from both group and other. The reason for a umask is security. When a
regular user creates a file, you don’t want everyone else to be able to write to it—you
must explicitly grant this permission. For the root user, the umask prevents the root
group and others from writing to files by default. This security feature prevents
daemons or programs running as root from writing to certain sensitive files such as
the /etc/passwd file. Everyone may read the file but only the root user may write to it.

You may change your umask value by issuing the umask command and a new value.
This temporarily changes the umask during your current login session:

$ umask 006

$ touch test.txt

$ 1s -1 test.txt

-rw-rw----. 1 khess khess 0 Jun 29 22:16 test.txt

To make this change permanent, which you may change later, do the following

to append the new umask to the end of the .bashrc file that resides in your home
directory:

$ echo umask 006 >> ~/.bashrc
$ source .bashrc

$ umask

0006

22 | Chapter2: Working with Permissions and Privileged Accounts

Every time you log in, your umask is set to 006 or 0006 (which are equivalent) and
yields a more secure -rw-rw- - - - new default file permission.

Summary

In this chapter, you gained more experience working at the command line, learned
some new commands, and perhaps more importantly, learned to read and modify file
permissions. In Chapter 3, you will learn some file editing basics and how to modify
the user’s default environment.

Summary | 23

CHAPTER 3
Customizing the User Experience

This chapter covers customizing the user experience for yourself and your users.
System administrators are often called upon to make minor changes to a user’s envi-
ronment or to the default environment for all users on the system (the latter is known
as a global change). As long as any requested alterations and enhancements don’t
compromise system security or violate corporate policy, there’s no harm in making
changes that accommodate a user’s needs and workflows. Our duty as sysadmins is,
after all, to the company first (and then to the user). The user is your customer.

Customizing the default user environment globally changes the environment for
everyone on the system. However, you or the user can override some global parame-
ters. You made such an override in Chapter 2 when you added the new umask to
your user account. By setting your personal umask preference after the global one was
set, you superseded the one set by the system. It's a common practice for users to
customize the environments they have control over.

This chapter covers customizing your and your users’ environments by editing key
files in each user’s home directory. As a system administrator, you'll also explore the
“global” versions of these environment files that can be changed or added to, enabling
you to create a specific experience for your users.

Altering Home Directory Options

In every user’s home directory, a few hidden files control most of the user’s environ-
ment. Since many Linux users use bash, it is the focus of the default and custom user
environment discussions in this chapter. (Other s